Name:	
	ī

Date:

Per:

Because $1 \text{ mole} = 6.022 \text{ x } 10^{23} \text{ and } 1 \text{ mole}$ between the number of atoms in a same	nole = the atomic mass of an element in grams, the mole may be used to convert ple and its mass.
<i>p. X</i>	Two Step: Particle \rightarrow Mass Conversions1 mol Xmolar mass X6.022 x 10 ²³ p. X1 mol X

DIRECTIONS: Calculate the mass of:

- 1. 3.45×10^{24} atoms carbon
- 2. 9.17 x 10^{23} atoms nickel
- 3. 1.45×10^{22} atoms silver

Because 1 mole = the atomic mass of an element in grams and, 1 mole = 6.022×10^{23} the mole may be used to convert			
between mass and the number of atoms	in a sample.		
	Two Step: Mass \rightarrow Particle Conversions		
g X	$1 mol X = 6.022 \times 10^{23} p. X$		
	molar mass X 1 mol XP. A		

DIRECTIONS: Calculate the number of atoms in:

- 4. 178 g gold
- 5. 125 g phosphorus
- 6. 15.2 g fluorine